
Revision 2

Evaluation of a Particle Swarm Algorithm
for Biomechanical Optimization

Jaco F. Schutte1, Byung-Il Koh2, Jeffrey A. Reinbolt1,

Benjamin J. Fregly1,3, Raphael T. Haftka1, and Alan D. George2

1Department of Mechanical & Aerospace Engineering, 2Department of Electrical & Computer

Engineering, and 3Department of Biomedical Engineering, University of Florida, Gainesville, FL

Re-submitted as an original full-length research paper to the

Journal of Biomechanical Engineering

September 23, 2004

Address correspondence to:

B.J. Fregly, Ph.D.
Assistant Professor

Department of Mechanical & Aerospace Engineering
231 MAE-A Building

PO Box 116250
University of Florida

Gainesville, FL 32611-6250
Phone: (352) 392-8157
Fax: (352) 392-7303

E-mail: fregly@ufl.edu

Key words: Biomechanical optimization, scaling, particle swarm, system identification.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
23 SEP 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Evaluation of a Particle Swarm Algorithm for Biomechanical
Optimization

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Florida,Department of Mechanical & Aerospace
Engineering,Gainesville,FL,32611

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Revision 2 Schutte et al.

Abstract

Optimization is frequently employed in biomechanics research to solve system identification

problems, predict human movement, or estimate muscle or other internal forces that cannot be

measured directly. Unfortunately, biomechanical optimization problems often possess multiple

local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-

based algorithms can be affected by scaling to account for design variables with different length

scales or units. This study evaluates a recently developed version of the particle swarm

optimization (PSO) algorithm to address these problems. The algorithm’s global search

capabilities were investigated using a suite of difficult analytical test problems, while its scale-

independent nature was proven mathematically and verified using a biomechanical test problem.

For comparison, all test problems were also solved with three off-the-shelf optimization

algorithms – a global genetic algorithm (GA) and multi-start gradient-based sequential quadratic

programming (SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems,

only the PSO algorithm was successful on the majority of the problems. When compared to

previously published results for the same problems, PSO was more robust than a global

simulated annealing algorithm but less robust than a different, more complex genetic algorithm.

For the biomechanical test problem, only the PSO algorithm was insensitive to design variable

scaling, with the GA algorithm being mildly sensitive and the SQP and BFGS algorithms being

highly sensitive. The proposed PSO algorithm (freely available with this article) provides a new

off-the-shelf global optimization option for difficult biomechanical problems, especially those

utilizing design variables with different length scales or units.

Revision 2 Schutte et al.

 1

1. Introduction

 Optimization methods are used extensively in biomechanics research to predict movement-

related quantities that cannot be measured experimentally. Forward dynamic, inverse dynamic,

and inverse static optimizations have been used to predict muscle, ligament, and joint contact

forces during experimental or predicted movements [e.g., 1-12]. System identification

optimizations have been employed to tune a variety of musculoskeletal model parameters to

experimental movement data [e.g., 13-17]. Image matching optimizations have been performed

to align implant and bone models to in vivo fluoroscopic images collected during loaded

functional activities [e.g., 18-20].

 Since biomechanical optimization problems are typically nonlinear in the design variables,

gradient-based nonlinear programming has been the most widely used optimization method. The

increasing size and complexity of biomechanical models has also led to parallelization of

gradient-based algorithms, since gradient calculations can be easily distributed to multiple

processors [1-3]. However, gradient-based optimizers can suffer from several important

limitations. They are local rather than global by nature and so can be sensitive to the initial

guess. Experimental or numerical noise can exacerbate this problem by introducing multiple

local minima into the problem. For some problems, multiple local minima may exist due to the

nature of the problem itself. In most situations, the necessary gradient values cannot be obtained

analytically, and finite difference gradient calculations can be sensitive to the selected finite

difference step size. Furthermore, the use of design variables with different length scales or units

can produce poorly scaled problems that converge slowly or not at all [21-22], necessitating

design variable scaling to improve performance.

 Motivated by these limitations and improvements in computer speed, recent studies have

begun investigating the use of non-gradient global optimizers for biomechanical applications.

Neptune [4] compared the performance of a simulated annealing (SA) algorithm with that of

downhill simplex (DS) and sequential quadratic programming (SQP) algorithms on a forward

dynamic optimization of bicycle pedaling utilizing 27 design variables. Simulated annealing

Revision 2 Schutte et al.

 2

found a better optimum than the other two methods and in a reasonable amount of CPU time.

More recently, Soest and Casius [5] evaluated a parallel implementation of a genetic algorithm

(GA) using a suite of analytical tests problems with up to 32 design variables and forward

dynamic optimizations of jumping and isokinetic cycling with up to 34 design variables. The

genetic algorithm generally outperformed all other algorithms tested, including SA, on both the

analytical test suite and the movement optimizations.

 This study evaluates a recent addition to the arsenal of global optimization methods – particle

swarm optimization (PSO) – for use on biomechanical problems. A recently-developed variant

of the PSO algorithm is used for the investigation. The algorithm’s global search capabilities are

evaluated using a previously published suite of difficult analytical test problems with multiple

local minima [5], while its insensitivity to design variable scaling is proven mathematically and

verified using a biomechanical test problem. For both categories of problems, PSO robustness,

performance, and scale-independence are compared to that of three off-the-shelf optimization

algorithms - a genetic algorithm (GA), a sequential quadratic programming algorithm (SQP), and

a Broydon-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm. In addition, previously

published results [5] for the analytical test problems permit comparison with a more complex GA

algorithm (GA*), a simulated annealing algorithm (SA), a different SQP algorithm (SQP*), and

a downhill simplex (DS) algorithm.

2. Theory

 2.1 Particle swarm algorithm. Particle swarm optimization is a stochastic global

optimization approach introduced by Kennedy and Eberhart [23]. The method's strength lies in

its simplicity, being easy to code and requiring few algorithm parameters to define convergence

behavior. The following is a brief introduction to the operation of the particle swarm algorithm

based on a recent implementation by Fourie and Groenwold [24] incorporating dynamic inertia

and velocity reduction.

Revision 2 Schutte et al.

 3

 Consider a swarm of p particles, where each particle's position i
kx represents a possible

solution point in the problem design space D. For each particle i, Kennedy and Eberhart [23]

proposed that the position i
k 1x be updated in the following manner:

,11
i
k

i
k

i
k vxx (1)

with a pseudo-velocity i
k 1v calculated as follows:

i
kk

i
k

i
k

i
kk

i
k rcrcw xgxpvv 22111 (2)

Here, subscript k indicates a (unit) pseudo-time increment. The point i
kp is the best-found cost

location by particle i up to timestep k, which represents the cognitive contribution to the search

vector i
k 1v . Each component of i

k 1v is constrained to be less than or equal to a maximum value

defined in max
1kv . The point kg is the global best-found position among all particles in the swarm

up to time k and forms the social contribution to the velocity vector. Cost function values

associated with i
kp and kg are denoted by i

bestf and g
bestf respectively. Random numbers 1r and

2r are uniformly distributed in the interval [0,1]. Shi and Eberhart [25] proposed that the

cognitive and social scaling parameters 1c and 2c be selected such that 221 cc to allow the

product 11rc or 22rc to have a mean of 1. The result of using these proposed values is that the

particles overshoot the attraction points i
kp and kg half the time, thereby maintaining separation

in the group and allowing a greater area to be searched than if the particles did not overshoot.

The variable kw , set to 1 at initialization, is a modification to the original PSO algorithm [23].

By reducing its value dynamically based on the cost function improvement rate, the search area

is gradually reduced [26]. This dynamic reduction behavior is defined by dw , the amount by

which the inertia kw is reduced, dv , the amount by which the maximum velocity max
1kv is

reduced, and d, the number of iterations with no improvement in kg before these reduction take

place [24] (see algorithm flow description below).

 Initialization of the algorithm involves several important steps. Particles are randomly

distributed throughout the design space, and particle velocities i
0v are initialized to random

values within the limits max
000 vv i . The particle velocity upper limit max

0v is calculated as a

Revision 2 Schutte et al.

 4

fraction of the distance between the upper and lower bound on variables in the design space

LBUB xxvmax
0 with 5.0 as suggested in [26]. Iteration counters k and t are set to 0.

Iteration counter k is used to monitor the total number of swarm iterations, while iteration

counter t is used to monitor the number of swarm iterations since the last improvement in kg .

Thus, t is periodically reset to zero during the optimization while k is not.

 The algorithm flow can be represented as follows:

1. Initialize

(a) Set constants , 1c , 2c , maxk , max
0v , 0w , dv , dw , and d

(b) Set counters k = 0, t = 0. Set random number seed.

(c) Randomly initialize particle positions in0 Dx i for pi ,,1

(d) Randomly initialize particle velocities max
000 vv i for pi ,,1

(e) Evaluate cost function values if0 using design space coordinates i
0x for pi ,,1

(f) Set ii
best ff 0 and ii

00 xp for pi ,,1

(g) Set g
bestf to best i

bestf and 0g to corresponding i
0x

2. Optimize

(a) Update particle velocity vectors i
k 1v using Eq. (2)

(b) If i
k 1v > max

1kv for any component, then set that component to its maximum allowable value

(c) Update particle position vectors i
k 1x using Eq. (1)

(d) Evaluate cost function values i
kf 1 using design space coordinates i

k 1x for pi ,,1

(e) If i
best

i
k ff 1 , then i

k
i

best ff 1 , i
k

i
k 11 xp for pi ,,1

(f) If g
best

i
k ff 1 , then i

k
g

best ff 1 , i
kk 11 xg for pi ,,1

(g) If g
bestf was improved in (e), then reset t = 0. Else increment t

(h) If maximum number of function evaluations is exceeded, then go to 3

(i) If t = d, then multiply 1kw by dw1 and max
1kv by dv1

(j) Increment k

(k) Go to 2(a).

Revision 2 Schutte et al.

 5

3. Report results

4. Terminate

 This algorithm was coded in the C programming language by the lead author [27] and used

for all PSO analyses performed in the present study. A standard population size of 20 particles

was used for all runs, and other algorithm parameters were also selected based on standard

recommendations (Table 1) [27-29].

 2.2 Analysis of Scale Sensitivity. One of the benefits of the PSO algorithm is its

insensitivity to design variable scaling. To prove this characteristic, we will use a proof by

induction to show that all particles follow an identical path through the design space regardless

of how the Design variables are scaled. In actual PSO runs intended to investigate this property,

use of the same random seed in scaled and unscaled cases will ensure that an identical sequence

of random 1r and 2r values are produced by the computer throughout the course of the

optimization.

 Consider an optimization problem with n design variables. An n-dimensional constant

scaling vector can be used to scale any or all dimensions of the problem design space:

n

3

2

1

 (3)

We wish to show that for any time step 0k ,

kk vv (4)

kk xx (5)

where kx and kv (dropping superscript i) are the unscaled position and velocity, respectively, of

an individual particle and kk xx and kk vv are the corresponding scaled versions.

Revision 2 Schutte et al.

 6

 First, we must show that our proposition is true for the base case, which involves

initialization (0k) and the first time step (1k). Applying the scaling vector to an

individual particle position 0x during initialization produces a scaled particle position 0x :

00 xx (6)

This implies that

0000 , ggpp (7)

In the unscaled case, the pseudo-velocity is calculated as

LBUB xxv0 (8)

In the scaled case, this becomes

0

0

v
xx
xx

xxv

LBUB

LBUB

LBUB

 (9)

From Eqs. (1) and (2) and these initial conditions, the particle pseudo-velocity and position for

the first time step can be written as

00220011001 xgxpvv rcrcw (10)

101 vxx (11)

in the unscaled case and

1

0022001100

0022001100

00220011001

v
xgxpv

xgxpv
xgxpvv

rcrcw
rcrcw

rcrcw

 (12)

1

10

10

101

x
vx
vx

vxx

 (13)

in the scaled case. Thus, our proposition is true for the base case.

Revision 2 Schutte et al.

 7

 Next, we must show that our proposition is true for the inductive step. If we assume our

proposition holds for any time step jk , we must prove that it also holds for time step

1jk . We begin by replacing subscript k with subscript j in Eqs. (4) and (5). If we then

replace subscript 0 with subscript j and subscript 1 with subscript 1j in Eqs. (12) and (13), we

arrive at Eqs. (4) and (5) where subscript k is replaced by subscript 1j . Thus, our proposition

is true for any time step 1j .

 Consequently, since the base case is true and the inductive step is true, Eqs. (4) and (5) are

true for all 0k . From Eqs. (4) and (5), we can conclude that any linear scaling of the design

variables (or subset thereof) will have no effect on the final or any intermediate result of the

optimization, since all velocities and positions are scaled accordingly. This fact leads to identical

step intervals being taken in the design space for scaled and unscaled version of the same

problem, assuming infinite precision in all calculations.

 In contrast, gradient-based optimization methods are often sensitive to design variable

scaling due to algorithmic issues and numerical approximations. First derivative methods are

sensitive because of algorithmic issues, as illustrated by a simple example. Consider the

following minimization problem with two design variables),(yx where the cost function is

100

2
2 yx (14)

with initial guess (1,1). A scaled version of the same problem can be created by letting

10/~,~ yyxx so that the cost function becomes

22 ~~ yx (15)

with initial guess (1,10). Taking first derivatives of each cost function with respect to the

corresponding design variables and evaluating at the initial guesses, the search direction for the

unscaled problem is along a line rotated 5.7º from the positive x axis and for the scaled problem

along a line rotated 45º. To reach the optimum in a single step, the unscaled problem requires a

search direction rotated 84.3º and the scaled problem 45º. Thus, the scaled problem can

Revision 2 Schutte et al.

 8

theoretically reach the optimum in a single step while the unscaled problem cannot due to the

effect of scaling on the calculated search direction.

 Second derivative methods are sensitive to design variable scaling because of numerical

issues related to approximation of the Hessian (second derivative) matrix. According to Gill et

al. [21], Newton methods utilizing an exact Hessian matrix will be insensitive to design variable

scaling as long as the Hessian matrix remains positive definite. However, in practice, exact

Hessian calculations are almost never available, necessitating numerical approximations via

finite differencing. Errors in these approximations result in different search directions for scaled

versus unscaled versions of the same problem. Even a small amount of design variable scaling

can significantly affect the Hessian matrix so that design variable changes of similar magnitude

will not produce comparable magnitude cost function changes [21]. Common gradient-based

algorithms that employ an approximate Hessian include Newton and quasi-Newton nonlinear

programming methods such as BFGS, SQP methods, and nonlinear least-squares methods such

as Levenberg-Marquardt [21]. A detailed discussion of the influence of design variable scaling

on optimization algorithm performance can be found in Gill et al. [21].

3. Methodology

3.1 Optimization Algorithms

 In addition to our PSO algorithm, three off-the-shelf optimization algorithms were applied to

all test problems (analytical and biomechanical - see below) for comparison purposes. One was a

global GA algorithm developed by Deb [30-32]. This basic GA implementation utilizes one

mutation operator and one crossover operator along with real encoding to handle continuous

variables. The other two algorithms were commercial implementations of gradient-based SQP

and BFGS algorithms (VisualDOC, Vanderplaats R & D, Colorado Springs, CO).

 All four algorithms (PSO, GA, SQP, and BFGS) were parallelized to accommodate the

computational demands of the biomechanical test problem. For the PSO algorithm,

parallelization was performed by distributing individual particle function evaluations to different

Revision 2 Schutte et al.

 9

processors as detailed in [33]. For the GA algorithm, individual chromosome function

evaluations were parallelized as described in [5]. Finally, for the SQP and BFGS algorithms,

finite difference gradient calculations were performed on different processors as outlined in [34].

A master-slave paradigm using the Message Passing Interface (MPI) [35-36] was employed for

all parallel implementations. Parallel optimizations for the biomechanical test problem were run

on a cluster of Linux-based PCs in the University of Florida High-performance Computing and

Simulation Research Laboratory (1.33 GHz Athlon CPUs with 256MB memory on a 100Mbps

switched Fast Ethernet network).

 While the PSO algorithm used standard algorithm parameters for all optimization runs, minor

algorithm tuning was performed on the GA, SQP, and BFGS algorithms for the biomechanical

test problem. The goal was to give these algorithms the best possible chance for success against

the PSO algorithm. For the GA algorithm, preliminary optimizations were performed using

population sizes ranging from 40 to 100. It was found that for the specified maximum number of

function evaluations, a population size of 60 produced the best results. Consequently, this

population size was used for all subsequent optimization runs (analytical and biomechanical).

For the SQP and BFGS algorithms, automatic tuning of the finite difference step size (FDSS)

was performed separately for each design variable. At the start of each gradient-based run,

forward and central difference gradients were calculated for each design variable beginning with

a relative FDSS of 110 . The step size was then incrementally decreased by factors of ten until

the absolute difference between forward and central gradient results was a minimum. This

approach was taken since the amount of noise in the biomechanical test problem prevented a

single stable gradient value from being calculated over a wide range of FDSS values (see

Discussion). The forward difference step size automatically selected for each design variable was

used for the remainder of the run.

3.2 Analytical Test Problems

 The global search capabilities of our PSO implementation were evaluated using a suite of

Revision 2 Schutte et al.

 10

difficult analytical test problems previously published by Soest and Casius [5]. In that study,

each problem in the suite was evaluated using four different optimizers: SA, GA*, SQP*, and

DS, where a star indicates a different version of an algorithm used in our study. One thousand

optimization runs were performed with each optimizer starting from random initial guesses and

using standard optimization algorithm parameters. Each run was terminated based on a pre-

defined number of function evaluations for the particular problem being solved. We followed an

identical procedure with our four algorithms to permit comparison between our results and those

published in [5]. Since two of the algorithms used in our study (GA and SQP) were of the same

general category as algorithms used [5] (GA* and SQP*), comparisons could be made between

different implementations of the same general algorithm. Failed PSO and GA runs were allowed

to use up the full number of function evaluations, whereas failed SQP and BFGS runs were re-

started from new random initial guesses until the full number of function evaluations was

completed. Only 100 rather than 1000 runs were performed with the SQP and BFGS algorithms

due to a database size problem in the VisualDOC software.

 A detailed description of the six analytical test problems can be found in Soest and Casius

[5]. Since the design variables for each problem possessed the same absolute upper and lower

bound and appeared in the cost function in a similar form, design variable scaling was not an

issue in these problems. The six analytical test problems are described briefly below.

1H : This simple 2-dimensional function [5] has several local maxima and a global maximum

of 2 at the coordinates (8.6998, 6.7665).

1
8

sin
8

sin
),(

1
2

22
1

2

211 d

xxxx
xxH (16)

100,100, 21 xx

where 2
2

2
1 7665.66998.8 xxd

Ten thousand function evaluations were used for this problem.

Revision 2 Schutte et al.

 11

2H : This inverted version of the F6 function used by Schaffer et al. [37] has 2 dimensions

with several local maxima around the global maximum of 1.0 at (0,0).

22
2

2
1

2
2

2
1

2

212
001.01

5.0sin
5.0,

xx

xx
xxH (17)

100,100, 21 xx

This problem was solved using 20,000 function evaluations per optimization run.

3H : This test function from Corana et al. [38] was used with dimensionality n = 4, 8, 16, and

32. The function contains a large number of local minima (on the order of n410) with a global

minimum of 0 at 05.0ix .
n

i ii

iiiii
n xd

tzxdczztxxH
1

2

2

13 otherwise
ifsgn,, (18)

1000,1000ix

where sx
s
xz i

i
i sgn49999.0 , 15.0c ,

2.0s , 05.0t , and

,12,8,4100
,11,7,310
,10,6,21000

,9,5,11

i
i
i
i

di

The use of the floor function in Eq. (18) makes the search space for this problem the most

discrete of all problems tested. The number of function evaluations used for this problem was

50,000 (n = 4), 100,000 (n = 8), 200,000 (n = 16), and 400,000 (n = 32).

 For all of the analytical test problems, an algorithm was considered to have succeeded if it

converged to within 310 of the known optimum cost function value within the specified number

of function evaluations [5].

3.3 Biomechanical Test Problem

 In addition to these analytical test problems, a biomechanical test problem was used to

evaluate the scale-independent nature of the PSO algorithm. Though our PSO algorithm is

Revision 2 Schutte et al.

 12

theoretically insensitive to design variable scaling, numerical round-off errors and

implementation details could potentially produce a scaling effect. Running the other three

algorithms on scaled and unscaled versions of this test problem also permitted investigation of

the extent to which other algorithms are influenced by design variable scaling.

 The biomechanical test problem involved determination of an ankle joint kinematic model

that best matched noisy synthetic (i.e., computer generated) movement data. Similar to [13], the

ankle was modeled as a three-dimensional linkage with two non-intersecting pin joints defined

by 12 subject-specific parameters (Fig. 1). These parameters represent the positions and

orientations of the talocrural and subtalar joint axes in the tibia, talus, and calcaneous. Position

parameters were in units of centimeters and orientation parameters in units of radians, resulting

in parameter values of varying magnitude. This model was part of a larger 27 degree-of-freedom

(DOF) full-body kinematic model used to optimize other joints as well [15].

 Given this model structure, noisy synthetic movement data were generated from a nominal

model for which the "true" model parameters were known. Joint parameters for the nominal

model along with a nominal motion were derived from in vivo experimental movement data

using the optimization methodology described below. Next, three markers were attached to the

tibia and calcaneous segments in the model at locations consistent with the experiment, and the

27 model DOFs were moved through their nominal motions. This process created synthetic

marker trajectories consistent with the nominal model parameters and motion and also

representative of the original experimental data. Finally, numerical noise was added to the

synthetic marker trajectories to emulate skin and soft tissue movement artifacts. For each marker

coordinate, a sinusoidal noise function was used with uniformly distributed random period,

phase, and amplitude (limited to a maximum of 1 cm). The values of the sinusoidal parameters

were based on previous studies reported in the literature [39,40].

 An unconstrained optimization problem with bounds on the design variables was formulated

to attempt to recover the known joint parameters from the noisy synthetic marker trajectories.

The cost function was

Revision 2 Schutte et al.

 13

)(min p
p

f (19)

with
50

1

26

1

3

1

,ˆmin)(
k j i

ijkijk ccf qpp
q

 (20)

where p is a vector of 12 design variables containing the joint parameters, q is a vector of 27

generalized coordinates for the kinematic model, ijkc is the ith coordinate of synthetic marker j at

time frame k, and qp,ˆijkc is the corresponding marker coordinate from the kinematic model. At

each time frame, qp,ˆijkc was computed from the current model parameters p and an optimized

model configuration q. A separate Levenberg-Marquardt nonlinear least-squares optimization

was performed for each time frame in Eq. (20) to determine this optimal configuration. A

relative convergence tolerance of 310 was chosen to achieve good accuracy with minimum

computational cost. A nested optimization formulation (i.e., minimization occurs in Eqs. (19)

and (20)) was used to decrease the dimensionality of the design space in Eq. (19). Equation (20)

was coded in Matlab and exported as stand-alone C code using the Matlab Compiler (The

Mathworks, Natick, MA). The executable read in a file containing the 12 design variables and

output a file containing the resulting cost function value. This approach facilitated the use of

different optimizers to solve Eq. (19).

 To investigate the influence of design variable scaling on optimization algorithm

performance, two versions of Eq. (20) were generated. The first used the original units of

centimeters and radians for the position and orientation design variables respectively. Bounds on

the design variables were chosen to enclose a physically realistic region around the solution point

in design space. Each position design variable was constrained to remain within a cube centered

at the midpoint of the medial and lateral malleoli, where the length of each side was equal to the

distance between the malleoli (i.e., 11.32 cm). Each orientation design variable was constrained

to remain within a circular cone defined by varying its “true” value by ± 30º. The second version

normalized all 12 design variables to be within [-1,1] using

Revision 2 Schutte et al.

 14

LBB

LBUBnorm

xx
xxxx

U

2 (21)

where UB and LB denote the upper and lower bounds, respectively, on the design variable vector

[41].

 Two approaches were used to compare PSO scale sensitivity to that of the other three

algorithms. For the first approach, a fixed number of scaled and unscaled runs (10) was

performed with each optimization algorithm starting from different random initial seeds, and the

sensitivity of the final cost function value to algorithm choice and design variable scaling was

evaluated. The stopping condition for PSO and GA runs was 10,000 function evaluations, while

SQP and BFGS runs were terminated when a relative convergence tolerance of 510 or absolute

convergence tolerance of 610 was met. For the second approach, a fixed number of function

evaluations (10,000) were performed with each algorithm to investigate unscaled versus scaled

convergence history. A single random initial guess was used for the PSO and GA algorithms,

and each algorithm was terminated once it reached 10,000 function evaluations. Since individual

SQP and BFGS runs require much fewer than 10,000 function evaluations, repeated runs were

performed with different random initial guesses until the total number of function evaluations

exceeded 10,000 at the termination of a run. This approach essentially uses SQP and BFGS as

global optimizers, where the separate runs are like individual particles that cannot communicate

with each another but have access to local gradient information. Finite difference step size tuning

at the start of each run was included in the computation of number of function evaluations. Once

the total number of runs required to reach 10,000 function evaluations was known, the lowest

cost function value from all runs at each iteration was used to represent the cost over a range of

function evaluations equal to the number of runs.

4. Results

 For the analytical test problems, our PSO algorithm was more robust than our GA, SQP, and

BFGS algorithms (Table 2). PSO converged to the correct global solution nearly 100% of the

Revision 2 Schutte et al.

 15

time on four of the six test problems (1H and 3H with n = 4, 8, and 16). It converged 67% of the

time for problem 2H and only 1.5% of the time for problem 3H with n = 32. In contrast, none of

the other algorithms converged more than 32% of the time on any of the analytical test problems.

Though our GA algorithm typically exhibited faster initial convergence than did our PSO

algorithm (Fig. 2), it leveled off and rarely reached the correct final point in design space within

the specified number of function evaluations.

 When PSO results were compared with previously published results for the same analytical

test problems [5], PSO success rates were better than those of SA but worse than those of GA*

(Table A1). SA was successful 100% of the time only on problem 1H , while GA* was

successful nearly 100% of the time on all six problems. Thus, for the global algorithms, GA*

was the most robust overall, followed by PSO and then SA, with GA exhibiting the worst

robustness. PSO converged more slowly than did GA* on all problems with available

convergence plots (four of the six problems) and also more slowly than did SA on the one

problem for which SA was successful (Fig. A1).

 For the biomechanical test problem, only the PSO algorithm was insensitive to design

variable scaling, with the GA algorithm being only mildly sensitive. In ten out of ten trials,

unscaled and scaled PSO runs converged to the same point in design space (Fig. 3a), while

unscaled and scaled GA runs converged to nearly the same point (Fig. 3b). PSO results were the

most consistent from trial to trial, converging to a final cost function value between 69 and 70.

(Table 3). GA results were the next most consistent with final cost function values ranging from

71 to 84. Typical unscaled and scaled PSO and GA runs produced root-mean-square (RMS)

marker distance, position parameter, and orientation parameter errors of comparable magnitude,

with PSO errors generally being slightly smaller.

 In contrast, the SQP and BFGS algorithms were highly sensitive to design variable scaling in

the biomechanical test problem. For the ten trials, unscaled and scaled SQP or BFGS runs rarely

converged to similar points in design space (note y axis scale in Fig. 3) and produced large

differences in final cost function value from one trial to the next (Fig. 3c and d). Scaling

Revision 2 Schutte et al.

 16

improved the final result in seven out of ten SQP trials and in five of ten BFGS trials. The best

unscaled and scaled SQP final cost function values were 255 and 121, respectively, while those

of BFGS were 355 and 102 (Table 3). Thus, scaling yielded the best result found with both

algorithms. The best SQP and BFGS trials generally produced larger RMS marker distance

errors (up to two times worse), orientation parameter errors (up to five times worse), and position

parameter errors (up to six times worse) than those found by PSO or GA.

 When detailed convergence histories were plotted over 10,000 function evaluations for the

biomechanical test problem (Fig. 4), unscaled and scaled histories for PSO were

indistinguishable, while those of GA were similar and those of SQP or BFGS notably different.

For PSO, only minute differences in the design variables on the order of 510 were observed,

resulting from numerical round off errors caused by limitations in machine precision. To reach

10,000 function evaluations, 17 unscaled and 26 scaled SQP runs were required compared to 56

unscaled and 44 scaled runs for BFGS. The length and value of the initial flat region in the SQP

and BFGS convergence histories was related to the number of FDSS tuning evaluations

performed. More runs meant more tuning evaluations as well as an increased likelihood of

finding a lower initial cost function value.

5. Discussion

This paper evaluated a recent variation of the PSO algorithm with dynamic inertia and

velocity updating as a possible addition to the arsenal of methods that can be applied to difficult

biomechanical optimization problems. For all problems investigated, our PSO algorithm with

standard algorithm parameters performed better than did three off-the-self optimizers – GA,

SQP, and BFGS. For the analytical test problems, PSO robustness was found to be better than

that of two other global algorithms but worse than that of a third. For the biomechanical test

problem with added numerical noise, PSO was found to be insensitive to design variable scaling

while GA was only mildly sensitive and SQP and BFGS highly sensitive. Overall, the results

suggest that our PSO algorithm is worth consideration for difficult biomechanical optimization

Revision 2 Schutte et al.

 17

problems, especially those for which design variable scaling may be an issue. Making our PSO

algorithm freely available provides a new off-the-shelf option for such problems.

 Though our biomechanical optimization involved a system identification problem, PSO may

be equally applicable to problems involving forward dynamic, inverse dynamic, inverse static, or

image matching analyses. Other global methods such as SA and GA have already been applied

successfully to such problems [4-5,19], and there is no reason to believe that PSO would not

perform equally well. As with any global optimizer, PSO utilization would be limited by the

computational cost of function evaluations given the large number required for a global search.

 Our particle swarm implementation may also be applicable to some large-scale

biomechanical optimization problems. Outside the biomechanics arena [28-29,42-51], PSO has

been used to solve problems on the order of 120 design variables [49-51]. In the present study,

our PSO algorithm was unsuccessful on the largest test problem, 3H with n = 32 design

variables. However, in a recent study, our PSO algorithm successfully solved the Griewank

global test problem with 128 design variables using population sizes ranging from 16 to 128

[33]. When the Corana test problem (3H) was attempted with 128 DVs, the algorithm exhibited

worse convergence. Since the Griewank problem possesses a bumpy but continuous search space

and the Corana problem a highly discrete search space, our PSO algorithm may work best on

global problems with a continuous search space. It is not known how our PSO algorithm would

perform on biomechanical problems with several hundred DVs, such as the forward dynamic

optimizations of jumping and walking performed with parallel SQP in [1-3].

 One advantage of global algorithms such as PSO, GA, and SA is that they often do not

require significant algorithm parameter tuning to perform well on difficult problems. The GA

used in [5] (which is not freely available) required no tuning to perform well on all of these

particular analytical test problems. The SA algorithm in [5] required tuning of two parameters to

improve algorithm robustness significantly on those problems. Our PSO algorithm (which is

freely available with this article) required tuning of one parameter (dw , which was increased

from 1.0 to 1.5) to produce 100% success on the two problems where it had significant failures.

Revision 2 Schutte et al.

 18

For the biomechanical test problem, our PSO algorithm required no tuning, and only the

population size of our GA algorithm required tuning to improve convergence speed. Neither

algorithm was sensitive to the two sources of noise present in the problem - noise added to the

synthetic marker trajectories, and noise due to a somewhat loose convergence tolerance in the

Levenberg-Marquardt sub-optimizations. Thus, for many global algorithm implementations,

poor performance on a particular problem can be rectified by minor tuning of a small number of

algorithm parameters.

 In contrast, gradient-based algorithms such as SQP and BFGS can require a significant

amount of tuning even to begin to approach global optimizer results on some problems. For the

biomechanical test problem, our SQP and BFGS algorithms were highly tuned by scaling the

design variables and determining the optimal FDSS for each design variable separately. FDSS

tuning was especially critical due to the two sources of noise noted above. When forward and

central difference gradient results were compared for one of the design variables using two

different Levenberg-Marquardt relative convergence tolerances (310 and 610), a "sweet spot"

was found near a step size of 210 (Fig. 5). Outside of that "sweet spot," which was

automatically identified and used in generating our SQP and BFGS results, forward and central

difference gradient results diverged quickly when the looser tolerance was used. Since most

users of gradient-based optimization algorithms do not scale the design variables or tune the

FDSS for each design variable separately, and many do not perform multiple runs, our SQP and

BFGS results for the biomechanical test problem represent best-case rather than typical results.

For this particular problem, an off-the-shelf global algorithm such as PSO or GA is preferable

due to the significant reduction in effort required to obtain repeatable and reliable solutions.

 Another advantage of PSO and GA algorithms is the ease with which they can be parallelized

[5,33] and their resulting high parallel efficiency. For our PSO algorithm, Schutte et al. [33]

recently reported near ideal parallel efficiency for up to 32 processors. Soest and Casius [5]

reported near ideal parallel efficiency for their GA algorithm with up to 40 processors. Though

SA has historically been considered more difficult to parallelize [52], Higginson et al. [53]

Revision 2 Schutte et al.

 19

recently developed a new parallel SA implementation and demonstrated near ideal parallel

efficiency for up to 32 processors. In contrast, Koh et al. [34] reported poor SQP parallel

efficiency for up to 12 processors due to the sequential nature of the line search portion of the

algorithm.

 The caveat for these parallel efficiency results is that the time required per function

evaluation was approximately constant and the computational nodes were homogeneous. As

shown in [33], when function evaluations take different amounts of time, parallel efficiency of

our PSO algorithm (and any other synchronous parallel algorithm, including GA, SA, SQP, and

BFGS) will degrade with increasing number of processors. Synchronization between individuals

in the population or between individual gradient calculations requires slave computational nodes

that have completed their function evaluations to sit idle until all nodes have returned their

results to the master node. Consequently, the slowest computational node (whether loaded by

other users, performing the slowest function evaluation, or possessing the slowest processor in a

heterogeneous environment) will dictate the overall time for each parallel iteration. An

asynchronous PSO implementation with load balancing, where the global best-found position is

updated continuously as each particle completes a function evaluation, could address this

limitation. However, the extent to which convergence characteristics and scale independence

would be affected is not yet known.

 To put the results of our study into proper perspective, one must remember that optimization

algorithm robustness can be influenced heavily by algorithm implementation details, and no

single optimization algorithm will work for all problems. For two of the analytical test problems

(2H and 3H with n = 4), other studies have reported PSO results using formulations that did not

include dynamic inertia and velocity updating. Comparisons are difficult given differences in the

maximum number of function evaluations and number of particles, but in general, algorithm

modifications were (not surprisingly) found to influence algorithm convergence characteristics

[54-56]. For our GA and SQP algorithms, results for the analytical test problems were very

different from those obtained in [5] using different GA and SQP implementations. With seven

Revision 2 Schutte et al.

 20

mutation and four crossover operators, the GA algorithm used in [5] was obviously much more

complex than the one used here. In contrast, both SQP algorithms were highly-developed

commercial implementations. In contrast, poor performance by a gradient-based algorithm can

be difficult to correct even with design variable scaling and careful tuning of the FDSS. These

findings indicate that specific algorithm implementations, rather than general classes of

algorithms, must be evaluated to reach any conclusions about algorithm robustness and

performance on a particular problem.

6. Conclusion

 In summary, the PSO algorithm with dynamic inertia and velocity updating provides another

option for difficult biomechanical optimization problems with the added benefit of being scale

independent. There are few algorithm-specific parameters to adjust, and standard recommended

settings work well for most problems [60,85]. The algorithm’s main drawback is the high cost in

terms of function evaluations because of slow convergence in the final stages of the

optimization, a common trait among global search algorithms. In biomechanical optimization

problems, noise, multiple local minima, and design variables of different scale can limit the

reliability of gradient-based algorithms. The PSO algorithm presented here provides a simple-to-

use off-the-shelf alternative for consideration in such cases. The C source code for our PSO

algorithm is freely available at www.mae.ufl.edu/~fregly/download/pso.zip.

Acknowledgments

This study was funded by NIH National Library of Medicine (R03 LM07332-01) and Whitaker

Foundation grants to B.J. Fregly and an AFOSR (F49620-09-1-0070) grant to R.T. Haftka. The

authors thank Drs. Knoek van Soest and Richard Casius for providing the plot data in Fig. A1,

Mr. Tushar Goel for providing the C source code for the GA algorithm, and Dr. Vladimir

Balabanov of Vanderplaats R & D for assistance with VisualDOC modifications.

Revision 2 Schutte et al.

 21

References

[1] Anderson, F. C. and Pandy, M. G., 1999, “A Dynamic Optimization Solution for Vertical

Jumping in Three Dimensions,” Comp. Meth. Biomech. Biomed. Eng., 2, pp. 201-231.

[2] Anderson, F. C. and Pandy, M. G., 2001, “Dynamic Optimization of Human Walking,” J.

Biomech. Eng., 123, pp. 381-390.

[3] Pandy, M. G., 2001, “Computer Modeling and Simulation of Human Movement,” Ann.

Rev. Biomed. Eng., 3, pp. 245-273.

[4] Neptune, R.R., 1999, “Optimization Algorithm Performance in Determining Optimal

Controls in Human Movement Analyses,” J. Biomech. Eng., 121, pp. 249-252.

[5] Soest, A. J. and Casius, L. J. R., 2003, “The Merits of a Parallel Genetic Algorithm in

Solving Hard Optimization Problems,” J. Biomech. Eng., 125, pp. 141-146.

[6] Buchanan, T. S. and Shreeve, D. A., 1996, “An Evaluation of Optimization Techniques

for the Prediction of Muscle Activation Patterns During Isometric Tasks,” J. Biomech.

Eng., 118, pp. 565-574.

[7] Crowninshield, R. D. and Brand, R. D., 1981, “A Physiologically Based Criterion of

Muscle Force Prediction in Locomotion,” J. Biomech., 14, pp. 793-801.

[8] Glitsch, U. and Baumann, W., 1997, “The Three-Dimensional Determination of Internal

Loads in the Lower Extremity,” J. Biomech., 11, pp. 1123-1131.

[9] Kaufman, K. R., An, K.-N., Litchy, W. J., and Chao, E. Y. S., 1991, “Physiological

Prediction of Muscle Forces – I. Theoretical Formulation,” Neuroscience, 40, pp. 781-

792.

[10] Lu, T.-W. and O’Connor, J. J., 1999, “Bone Position Estimation from Skin Marker Co-

ordinates using Global Optimisation with Joint Constraints,” J. Biomech., 32, pp. 129-

124.

[11] Raasch, C. C., Zajac, F. E., Ma, B., and Levine, W. S., 1997, “Muscle Coordination of

Maximum-Speed Pedaling,” J. Biomech., 30, pp. 595-602.

Revision 2 Schutte et al.

 22

[12] Prilutsky, B. I., Herzog, W., and Allinger, T. L., 1997, “Forces of Individual Cat Ankle

Extensor Muscles During Locomotion Predicted Using Static Optimization,” J.

Biomech., 30, pp. 1025-1033.

[13] Bogert, A. J., Smith, G. D., and Nigg B. M., 1994, “In Vivo Determination of the

Anatomical Axes of the Ankle Joint Complex: An Optimization Approach,” J. Biomech.,

12, pp. 1477-88.

[14] Mommerstag, T. J. A., Blankevoort, L., Huiskes, R., Kooloos, J. G. M., and Kauer, J. M.

G., 1996, “Characterization of the Mechanical Behavior of Human Knee Ligaments: A

Numerical-Experimental Approach,” J. Biomech., 29, pp. 151-160.

[15] Reinbolt, J. A., Schutte, J. F., Fregly, B. J., Haftka, R. T., George, A. D., and Mitchell, K.

H., 2004, “Determination of Patient-specific Multi-joint Kinematic Models through Two-

level Optimization,” J. Biomech., (in press).

[16] Sommer, H. J. III, and Miller, N.R., 1980, “Technique for Kinematic Modeling of

Anatomical Joints,” J. Biomech. Eng., 102, pp. 311-317.

[17] Vaughan, C. L., Andrews, J. G., and Hay, J. G., 1982, “Selection of Body Segment

Parameters by Optimization Methods,” J. Biomech. Eng., 104, pp. 38-44.

[18] Kaptein, B. L., Valstar, E. R., Stoel, B. C., Rozing, P. M., and Reiber, J. H. C., 2003, “A

New Model-Based RSA Method Validated Using CAD Models and Models from

Reversed Engineering,” J. Biomech., 36, pp. 873-882.

[19] Mahfouz, M. R., Hoff, W. A., Komistek, R. D., and Dennis, D. A., 2003, “A Robust

Method for Registration of Three-Dimensional Knee Implant Models to Two-

Dimensional Fluoroscopy Images,” IEEE T Med. Imaging, 22, pp. 1561-1574.

[20] You, B.-M., Siy, P., Anderst, W., and Tashman, S., 2001, “In Vivo Measurement of 3-D

Skeletal Kinematics from Sequences of Biplane Radiographs: Application to Knee

Kinematics,” IEEE T. Med. Imaging, 20, pp. 514-525.

[21] Gill, P. E., Murray, W., and Wright, M. H., 1986, “Practical Optimization,” Academic

Press, New York.

Revision 2 Schutte et al.

 23

[22] Wilcox, K. and Wakayama, S., 2003, Simultaneous optimization of a multiple-aircraft

family. J. Aircraft, 40, pp. 616-622.

[23] Kennedy J., and Eberhart R.C., 1995, “Particle Swarm Optimization,” Proc. IEEE Intl.

Conf. Neural Networks, Perth, Australia, 4, pp. 1942-1948.

[24] Fourie, P. C. and Groenwold, A. A., 2002, “The Particle Swarm Optimization in Size and

Shape Optimization,” J. Struct. Multidiscip. Opt., 23, pp. 259-267.

[25] Shi, Y. and Eberhart, R.C., 1998, “Parameter Selection in Particle Swarm Optimization,”

Lect. Notes Comput. Sc. 1447, Springer-Verlag, Berlin, pp. 591-600.

[26] Fourie, P.C. and Groenwold, A.A., 2001, “The Particle Swarm Algorithm in Topology

Optimization,” Proc. of the Fourth World Congress of Struct. Multidiscip. Opt., Dalian,

China. pp. 52-53.

[27] Schutte, J.F., 2001, “Particle Swarms in Sizing and Global Optimization,” Masters thesis,

University of Pretoria, South Africa.

[28] Schutte, J.F. and Groenwold, A.A., 2003, “Sizing Design of Truss Structures using

Particle Swarms,” J. Struct. Multidiscip. Opt., 25, pp. 261-269.

[29] Schutte, J.F. and Groenwold, A.A., 2004, “A Study of Global Optimization using Particle

Swarms,” J. Global Opt., (in press).

[30] Deb, K., 2001, “Multi-Objective Optimization using Evolutionary Algorithms,” Wiley-

Interscience Series in Systems and Optimization, Chapter 4.

[31] Deb, K. and Agrawal, R.B., 1995, “Simulated Binary Crossover for Continuous Search

Space,” Complex Systems, 9, pp. 115-148.

[32] Deb, K. and Goyal, M., 1996, “A Combined Genetic Adaptive Search (GeneAS) for

Engineering Design,” Comp. Sci. Informatics, 26, pp. 30-45.

[33] Schutte, J. F., Reinbolt, J. A., Fregly, B. J., Haftka, R. T., and George, A. D., 2004,

“Parallel Global Optimization with the Particle Swarm Algorithm,” Int. J. Num. Methods

Eng., (in press).

Revision 2 Schutte et al.

 24

[34] Koh, B. I., Reinbolt, J. A., Fregly, B. J., and George, A. D., 2004, “Evaluation of Parallel

Decomposition Methods for Biomechanical Optimizations,” Comp. Meth. Biomech.

Biomed. Eng., (in press).

[35] Gropp, W. and Lusk, E., 1996, “User’s Guide for MPICH, “A Portable Implementation

of MPI,” Argonne National Laboratory, Mathematics and Computer Science Division,

http://www.mcs.anl.gov/mpi/mpiuserguide/paper.html.

[36] Gropp, W., Lusk, E., Doss, N., and Skjellum, A., 1996. “A High Performance, Portable

Implementation of the MPI Message Passing Interface Standard,” Parallel Computing,

22, pp. 789–828.

[37] Schaffer, J. D., Caruana, R. A., Eshelman, L. J., Das, R., 1989, “A Study of Control

Parameters Affecting Online Performance of Genetic Algorithms for Function

Optimizing,” Proc. 3rd Int. Conf. Genetic Alg., David J. D., ed., Morgan Kaufmann

Publishers, San Mateo, California, pp. 51–60.

[38] Corana, A., Marchesi, M., Martini, C., and Ridella, S., 1987, “Minimizing Multimodal

Functions of Continuous Variables with the "Simulated Annealing" Algorithm,” ACM

Trans. Math. Softw., 13, pp. 262–280.

[39] Chèze, L., Fregly, B. J., and Dimnet, J. 1995, “A Solidification Procedure to Facilitate

Kinematic Analyses Based on Video System Data,” J. Biomech., 28, pp. 879-884.

[40] Lu, T.-W. and O’Connor, J. J., 1999, “Bone Position Estimation from Skin Marker Co-

ordinates using Global Optimization with Joint Constraints,” J. Biomech., 32, pp. 129-

124.

[41] Reference Manual for VisualDOC C/C++ API, 2001, Vanderplaats Research and

Development, Inc., Colorado Springs, CO.

[42] Boeringer, D. W. and Werner, D. H., 2004, “Particle swarm optimization versus genetic

algorithms for phased array synthesis,” IEEE Trans. Antennas Propagation, 52, pp. 771-

779.

Revision 2 Schutte et al.

 25

[43] Brandstatter, B. and Baumgartner, U., 2002, “Particle Swarm Optimization - Mass-Spring

System Analogon,” IEEE T Magn., 38, pp. 997-1000.

[44] Cockshott, A. R. and Hartman, B. E., 2001, “Improving the Fermentation Medium for

Echinocandin B Production Part II: Particle Swarm Optimization,” Process Biochem., 36,

pp. 661-669.

[45] Costa, E. F. J., Lage, P. L. C., and Biscaia, E. C. Jr., 2003, “On the Numerical Solution

and Optimization of Sstyrene Polymerization in Tubular Reactors,” Computers Chem.

Eng., 27, pp. 1591-1604.

[46] Lu, W. Z., Fan, H.-Y., and Lo, S. M., 2003, “Application of Evolutionary Neural

Network Method in Predicting Pollutant Levels in Downtown Area of Hong Kong,”

Neurocomputing, 51, pp. 387-400.

[47] Pidaparti, R. M. and Jayanti, S., 2003, “Corrosion Fatigue through Particle Swarm

Optimization,” AIAA J., 41, pp. 1167-1171.

[48] Tandon, V., El-Mounayri, H., and Kishawy, H., 2002, “NC End Milling Optimization

using Evolutionary Computation,” Int. J Mach. Tool Manu., 42, pp. 595-605.

[49] Abido, M. A., 2002, “Optimal Power Flow Using Particle Swarm Optimization,” Int. J.

Elec. Power Energy Sys., 24, pp. 563-571.

[50] Abido, M. A., 2002, “Optimal Design of Power System Stabilizers using Particle Swarm

Optimization,” IEEE Trans. Energy Conv., 17, pp. 406-413.

[51] Gies, D. and Rahmat-Samii, Y., 2003, “Particle Swarm Optimization for Reconfigurable

Phase-Differentiated Array Design,” Microwave Opt. Tech. Letters, 38, pp. 168-175.

[52] Leite, J. P. B. and Topping, B. H. V., 1999, “Parallel Simulated Annealing for Structural

Optimization,” Comp. Struct., 73, pp. 545-564.

[53] Higginson, J. S., Neptune, R. R., and Anderson, F. C., 2004, “Simulated Parallel

Annealing within a Neighborhood for Optimization of Biomechanical Systems,” J.

Biomech, (in press).

Revision 2 Schutte et al.

 26

[54] Carlisle, A., and Dozier, G., 2001, “An Off-the-Shelf PSO,” Proc. Workshop on Particle

Swarm Optimization, Indianapolis, USA.

[55] Parsopoulos, K.E. and Vrahatis, M.N., 2002, “Recent Approaches to Global Optimization

Problems through Particle Swarm Optimization." Nat. Comp., 1, pp. 235-306.

[56] Trelea, I.C., 2002, “The Particle Sswarm Optimization Algorithm: Convergence Analysis

and Parameter Selection,” Inform. Process. Lett., 85, pp. 317–325.

Revision 2 Schutte et al.

Captions

Figure Captions

Figure 1: Experimental shank and foot surface marker configuration (left) for developing a

subject-specific kinematic ankle model defined by 12 parameters 1p through 12p (right). Each

parameter defines the position or orientation of a joint axis in one of the body segments.

Figure 2: Comparison of PSO convergence history with that of GA, SQP, and BFGS

optimization algorithms for the analytical test problems. Error was computed using the known

cost at the global optimum and represents the average of 1000 (PSO and GA) or 100 (multi-start

SQP and BFGS) runs with each algorithm. (a) Problem 1H . (b) Problem 2H . (c) Problem 3H

with n = 4. (d) Problem 3H with n = 32.

Figure 3: Final cost function values for ten unscaled (dark bars) and scaled (gray bars) parallel

PSO, GA, SQP, and BFGS runs for the biomechanical test problem. Each pair of unscaled and

scaled runs was started from the same initial point(s) in design space, and each run was

terminated when the specified stopping criteria was met (see text).

Figure 4: Convergence history for unscaled (dark lines) and scaled (gray lines) parallel PSO, GA,

SQP, and BFGS runs for the biomechanical test problem. Each algorithm was run terminated

after 10,000 function evaluations. Only one unscaled and scaled PSO and GA run were required

to reach 10,000 function evaluations, while repeated SQP and BFGS runs were required to reach

that number. Separate SQP and BFGS runs were treated like individual particles in a single PSO

run for calculating convergence history (see text).

Figure 5: Sensitivity of SQP and BFGS gradient calculations to selected finite difference stepsize

for one design variable. Forward and central differencing were evaluated using relative

Revision 2 Schutte et al.

convergence tolerances of 310 and 610 for the nonlinear least squares sub-optimizations

performed during cost function evaluation (see Eq. (20)).

Figure A1: Comparison of SA, GA, SQP, and DS convergence history for the analytical test

problems as reported previously by Soest and Casius [5]. Error was computed using the known

cost at the global optimum and represents the average of 1000 runs with each algorithm.

(a) Problem 1H . The SA results have been updated using corrected data provided by Soest and

Casius, since the results in [5] accidentally used a temperature reduction rate of 0.5 rather than

the standard value of 0.85 as reported. (b) Problem 2H . (c) Problem 3H with n = 4. (d) Problem

3H with n = 32.

Table Captions

Table 1: Standard PSO algorithm parameters used in the present study.

Table 2: Fraction of successful PSO, GA, SQP, and BFGS runs for the analytical test problems.

Successful runs were identified by a final cost function value within 310 of the known optimum

value, consistent with [17].

Table 3: Final cost function values and associated marker distance and joint parameter root-

mean-square (RMS) errors after 10,000 function evaluations performed by multiple unscaled and

scaled PSO, GA, SQP, and BFGS runs. See Fig. 4 for corresponding convergence histories.

Table A1: Fraction of successful SA, GA, SQP, and DS runs for the analytical test problems as

reported previously by Soest and Casius [5]. The GA and SQP algorithm used in that study were

different from the ones used in our study. Successful runs were identified by a final cost function

value within 310 of the known optimum value.

10
0

10
-1

10
-2

10
-3

0 2 4 6 8 10

x 10
3

0 5 10 15 20

x 10
3

0 1 2 3 4 5

x 10
4

0 1 2 3 4

x 10
5

E
rr

o
r

a b

c d

E
rr

o
r

10
10

10
5

10
0

10
-5

10
10

10
5

10
0

10
-5

Number of Function Evaluations Number of Function Evaluations

Figure 2 Schutte et al.

10
0

10
-2

10
-4

10
-6

PSO

GA

SQP

BFGS

0

25

50

75

100

Figure 3 Schutte et al.

0

25

50

75

100

C
o
s
t

1 2 3 4 5 6 7 8 9 10
0

750

1500

2250

3000

Run

C
o
s
t

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

Run

PSO GA

SQP BFGS

a b

dc

Unscaled

Scaled

Figure 4 Schutte et al.

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

Number of Function Evaluations

C
o
s
t

Unscaled: Black lines

Scaled: Gray lines

PSO

GA

SQP

BFGS

Figure 5 Schutte et al.

10
-6

B

BBB

B

B

JJJJ

J

J
J

H

HHHHHH FFFFFFF

F

-1

0

1

2

Finite Difference Step Size

B Forward 1e-3

J Central 1e-3

H Forward 1e-6

F Central 1e-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

G
ra

d
ie

n
t
x
 1

0
4

10
0

10
-1

10
-2

10
-3

0 2 4 6 8 10

x 10
3

0 5 10 15 20

x 10
3

0 1 2 3 4 5

x 10
4

0 1 2 3 4

x 10
5

E
rr

o
r

a b

c d

E
rr

o
r

10
10

10
5

10
0

10
-5

10
10

10
5

10
0

10
-5

Number of Function Evaluations Number of Function Evaluations

Figure A1 Schutte et al.

10
0

10
-2

10
-4

10
-6

SA

GA

SQP

DS

Table 1 Schutte et al.

Parameter Description Value

p Population size (number of particles) 20

1c Cognitive trust parameter 2.0

2c Social trust parameter 2.0

0w Initial inertia 1

dw Inertia reduction parameter 0.01

 Bound on velocity fraction 0.5

dv Velocity reduction parameter 0.01

d Dynamic inertia/velocity reduction delay (function evaluations) 200

Table 2 Schutte et al.

 H3

Algorithm H1 H2 (n = 4) (n = 8) (n = 16) (n = 32)

PSO 0.972 0.688 1.000 1.000 1.000 0.015

GA 0.000 0.034 0.000 0.000 0.000 0.002

SQP 0.09 0.11 0.00 0.00 0.00 0.00

BFGS 0.00 0.32 0.00 0.00 0.00 0.00

Table 3 Schutte et al.

 RMS Error

Optimizer Formulation

Cost
Function

Marker
Distances (mm)

Orientation
Parameters (deg)

Position
Parameters (mm)

Unscaled 69.5 5.44 2.63 4.47 PSO
Scaled 69.5 5.44 2.63 4.47

Unscaled 77.9 5.78 2.65 6.97
GA

Scaled 74.0 5.64 3.76 4.01

Unscaled 255 10.4 3.76 14.3
SQP

Scaled 121 7.21 3.02 9.43

Unscaled 355 12.3 21.4 27.5
BFGS

Scaled 102 6.61 18.4 8.52

Table A1 Schutte et al.

 H3

Algorithm H1 H2 (n = 4) (n = 8) (n = 16) (n = 32)

SA 1.000 0.027 0.000 0.001 0.000 0.000

GA 0.990 0.999 1.000 1.000 1.000 1.000

SQP 0.279 0.810 0.385 0.000 0.000 0.000

DS 1.000 0.636 0.000 0.000 0.000 0.000

